Transient electroosmosis of a Maxwell fluid in a rotating microchannel

Skip to Navigation

EarlyView Article

  • Published: Aug 30, 2017
  • Author: Prasad Kaushik, Shubhadeep Mandal, Suman Chakraborty
  • Journal: ELECTROPHORESIS

The transient electroosmotic flow of Maxwell fluid in a rotating microchannel is investigated both analytically and numerically. We bring out the complex dynamics of the flow during the transience due to the combination of rotation and rheological effects. We show the regimes of operation under which our analysis holds the most significance. We also shed some light on the volumetric flow rate characteristics as dictated by the underlying flow physics. Mainly we show and analyze the various regimes of operation under which viscoelastic effects actuated by electroosmotic forcing dominate over Coriolis forces and vice versa, which has not been studied before. We also observe that the analytical solution compares well with the numerical solution. We believe that the results from the present study could potentially have far reaching applications in bio‐fluidic microsystems where fluids such as blood, mucus and saliva may be involved.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in separation science? Visit our sister site separationsNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved