Sputtering of bismuth thin films under MeV Cu heavy ion irradiation: Experimental data and inelastic thermal spike model interpretation.

Skip to Navigation

EarlyView Article

  • Published: Dec 27, 2017
  • Author: S. Mammeri, M. Msimanga, A. Dib, H. Ammi, C.A. Pineda‐Vargas

The sputtering of bismuth (Bi/Si) thin films deposited onto silicon substrates and irradiated by swift Cuq+ heavy ions (q = +4 to +7) was investigated by varying both the ion energy over the 10 to 26‐MeV range and the ion fluence ϕ from 5.1 × 1013 cm−2 to 3.4 × 1015 cm−2. The sputtering yields were determined experimentally via the Rutherford backscattering spectrometry technique using a 2‐MeV He+ ion beam. The measured sputtering yields versus Cu7+ ion fluence for a fixed incident energy of 26 MeV exhibit a significant depression at very low ϕ‐values flowed by a steady‐state regime above ~1.6 × 1014 cm−2, similarly to those previously pointed out for Bi thin films irradiated by MeV heavy ions. By fixing the incident ion fluence to a mean value of ~2.6 × 1015 cm−2 in the upper part of the yield saturation regime, the measured sputtering yield data versus ion energy were found to increase with increasing the electronic stopping power in the Bi target material. Their comparison to theoretical predicted models is discussed. A good agreement is observed between the measured sputtering yields and the predicted ones when considering the contribution of 2 competitive processes of nuclear and electronic energy losses via, respectively, the SRIM simulation code and the inelastic thermal spike model using refined parameters of the ion slowing down with reduced thermophysical proprieties of the Bi thin films.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in separation science? Visit our sister site separationsNOW.com

Copyright © 2018 John Wiley & Sons, Inc. All Rights Reserved