Journal Highlight: Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality

Skip to Navigation

Ezine

  • Published: Jul 22, 2013
  • Author: spectroscopyNOW
  • Channels: MRI Spectroscopy
thumbnail image: Journal Highlight: Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality
Methods to synthesize inorganic nanocrystals and make them biocompatible and active for MRI are reviewed, with examples of the various approaches and efforts to make them multifunctional.

Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality

NMR in Biomedicine, 2013, 26, 766-780
David P. Cormode, Brenda L. Sanchez-Gaytan, Aneta J. Mieszawska, Zahi A. Fayad, Willem J. M. Mulder

Abstract: Inorganic nanocrystals have myriad applications in medicine, including their use as drug or gene delivery complexes, therapeutic hyperthermia agents, in diagnostic systems and as contrast agents in a wide range of medical imaging techniques. In MRI, nanocrystals can produce contrast themselves, with iron oxides having been the most extensively explored, or can be given a coating that generates MR contrast, for example gold nanoparticles coated with gadolinium chelates. These MR-active nanocrystals can be used for imaging of the vasculature, liver and other organs, as well as molecular imaging, cell tracking and theranostics. As a result of these exciting applications, the synthesis and rendering of these nanocrystals as water soluble and biocompatible are therefore highly desirable. We discuss aqueous phase and organic phase methods for the synthesis of inorganic nanocrystals, such as gold, iron oxides and quantum dots. The pros and cons of the various methods are highlighted. We explore various methods for making nanocrystals biocompatible, i.e. direct synthesis of nanocrystals coated with biocompatible coatings, ligand substitution, amphiphile coating and embedding in carrier matrices that can be made biocompatible. Various examples are highlighted and their applications explained. These examples signify that the synthesis of biocompatible nanocrystals with controlled properties has been achieved by numerous research groups and can be applied to a wide range of applications. Therefore, we expect to see reports of preclinical applications of ever more complex MRI-active nanoparticles and their wider exploitation, as well as in novel clinical settings. 

  • This paper is free to view for all users registered on spectroscopyNOW.com until the end of August 2013.
    After this time, you can purchase it using Pay-Per-View on Wiley Online Library.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in separation science? Visit our sister site separationsNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved