Age- and sex-related differences in muscle phosphocreatine and oxygenation kinetics during high-intensity exercise in adolescents and adults

Skip to Navigation

Ezine

  • Published: Jul 26, 2010
  • Channels: MRI Spectroscopy
thumbnail image: Age- and sex-related differences in muscle phosphocreatine and oxygenation kinetics during high-intensity exercise in adolescents and adults
Age- and sex-related differences in muscle phosphocreatine and oxygenation kinetics during high-intensity exercise in adolescents and adults
Rebecca J. Willcocks, Craig A. Williams, Alan R. Barker, Jon Fulford and Neil Armstrong
NMR in Biomedicine 2010, 23, 569-577

family running

Abstract: The aim of this investigation was to examine the adaptation of the muscle phosphates (e.g. phosphocreatine (PCr) and ADP) implicated in regulating oxidative phosphorylation, and oxygenation at the onset of high intensity exercise in children and adults. The hypotheses were threefold: primary PCr kinetics would be faster in children than adults; the amplitude of the PCr slow component would be attenuated in children; and the amplitude of the deoxyhaemoglobin/myoglobin (HHb) slow component would be reduced in children. Eleven children (5 girls, 6 boys, 13 ± 1 years) and 11 adults (5 women, 6 men, 24 ± 4 years) completed two to four constant work rate exercise tests within a 1.5 T MR scanner. Quadriceps muscle energetics during high intensity exercise were monitored using 31P-MRS. Muscle oxygenation was monitored using near-infrared spectroscopy. The time constant for the PCr response was not significantly different in boys (31 ± 10 s), girls (31 ± 10 s), men (44 ± 20 s) or women (29 ± 14 s, main effects: age, p = 0.37, sex, p = 0.25). The amplitude of the PCr slow component relative to end-exercise PCr was not significantly different between children (23 ± 23%) and adults (17 ± 13%, p = 0.47). End-exercise [PCr] was significantly lower, and [ADP] higher, in females (18 ± 4 mM and 53 ± 16 µM) than males (23 ± 4 mM, p = 0.02 and 37 ± 11 µM, p = 0.02), but did not differ with age ([PCr]: p = 0.96, [ADP]: p = 0.72). The mean response time for muscle tissue deoxygenation was significantly faster in children (22 ± 4 s) than adults (27 ± 7 s, p = 0.01). The results of this study show that the control of oxidative metabolism at the onset of high intensity exercise is adult-like in 13-year-old children, but that matching of oxygen delivery to extraction is more precise in adults.

  • Click here to access the abstract of this paper. From here you can progress to read the full paper.
  • Click here for more details about NMR in Biomedicine

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Copyright Information

Interested in separation science? Visit our sister site separationsNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved