Journal Highlight: Aluminum incorporation in the C–S–H phase of white portland cement–metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy

Skip to Navigation

Ezine

  • Published: Sep 1, 2014
  • Author: spectroscopyNOW
  • Channels: NMR Knowledge Base
thumbnail image: Journal Highlight: Aluminum incorporation in the C–S–H phase of white portland cement–metakaolin blends studied by <sup>27</sup>Al and <sup>29</sup>Si MAS NMR spectroscopy
The composition and structure of the calcium-silicate-hydrate (C–S–H) phases formed by hydration of white portland cement–metakaolin (MK) blends have been investigated using 27Al and 29Si MAS NMR.


Aluminum incorporation in the C–S–H phase of white portland cement–metakaolin blends studied by 27Al and 29Si MAS NMR spectroscopy

Journal of the American Ceramic Society, 2014, 97, 2662-2671
Zhuo Dai, Thuan T. Tran and Jørgen Skibsted

Abstract: The composition and structure of the calcium-silicate-hydrate (C–S–H) phases formed by hydration of white portland cement–metakaolin (MK) blends have been investigated using 27Al and 29Si MAS NMR. This includes blends with 0, 5, 10, 15, 20, 25, 30 wt% MK, following their hydration from 1 d to 1 yr. 29Si MAS NMR reveals that the average Al/Si ratio for the C–S–H phases, formed by hydration of the portland cement–MK blends, increases almost linearly with the MK content but is invariant with the hydration time for a given MK content. Correspondingly, the average aluminosilicate chain lengths of the C–S–H increase with increasing MK content, reflecting the formation of a C–S–H with a lower Ca/Si ratio. The increase in Al/Si ratio with increasing MK content is supported by 27Al MAS NMR which also allows detection of strätlingite and fivefold coordinated aluminum, assigned to AlO5 sites in the interlayer of the C–S–H structure. Strätlingite is observed after prolonged hydration for MK substitution levels above 10 wt% MK. This is at a somewhat lower replacement level than expected from thermodynamic considerations which predict the formation of strätlingite for MK contents above 15 wt% after prolonged hydration for the actual portland cement–MK blends. The increase in fivefold coordinated Al with increasing MK content suggests that these sites may contribute to the charge balance of the charge deficit associated with the incorporation of Al3+ ions in the silicate chains of the C–S–H structure.

  • This paper is free to view for all users registered on spectroscopyNOW.com until the end of October 2014.
    After this time, you can purchase it using Pay-Per-View on Wiley Online Library.

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Copyright Information

Interested in separation science? Visit our sister site separationsNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved