Journal Highlight: The UV signature of carbon in the solar system

Skip to Navigation


  • Published: Feb 8, 2016
  • Author: spectroscopyNOW
  • Channels: UV/Vis Spectroscopy
thumbnail image: Journal Highlight: The UV signature of carbon in the solar system
Existing UV data of carbon compounds in the solar system have been compiled to review trends in UV spectral behavior.

The UV signature of carbon in the solar system

Meteoritics & Planetary Science, 2016, 51, 105-115
Amanda R. Hendrix, Faith Vilas and Jian-Yang Li

Abstract: Carbon compounds are ubiquitous in the solar system but are challenging to study using remote sensing due to the mostly bland spectral nature of these species in the traditional visible-near-infrared regime. In contrast, carbonaceous species are spectrally active in the ultraviolet (UV) but have largely not been considered for studies of solar system surfaces. We compile existing UV data of carbon compounds—well-studied in contemplation of the ISM extinction "bump" — to review trends in UV spectral behavior. Thermal and/or irradiation processing of carbon species results in the loss of H and ultimately graphitization. Graphitization is shown to produce distinct spectral features in the UV, which are predicted to be more readily detected in the inner solar system, whereas outer solar system bodies are expected to be more dominated by less-processed carbon compounds. Throughout the solar system, we can thus consider a “carbon continuum” where the more evolved carbons in the inner solar system exhibit a stronger UV absorption feature and associated far-UV rise. We compare carbon spectral models with spacecraft data of two bodies from different points in the carbon continuum, Ceres and Iapetus. We find that the apparent strong far-UV upturn in Ceres' spectrum (in the 150–200 nm range) can be explained by an anthracite-like species while Iapetus' spectrum features a reflectance peak consistent with polycyclic aromatic hydrocarbons. We make generalized predictions for UV spectral characteristics in other regions of the solar system.

  • This paper is free to view for all users registered on until the end of March 2016.
    After this time, you can purchase it using Pay-Per-View on Wiley Online Library.

Follow us on Twitter!

Social Links

Share This Links

Bookmark and Share


Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Copyright Information

Interested in separation science? Visit our sister site

Copyright © 2018 John Wiley & Sons, Inc. All Rights Reserved