Journal Highlight: Attomol-level ATP bioluminometer for detecting single bacterium

Skip to Navigation

Ezine

  • Published: Aug 8, 2017
  • Author: spectroscopyNOW
  • Channels: UV/Vis Spectroscopy
thumbnail image: Journal Highlight: Attomol-level ATP bioluminometer for detecting single bacterium

An automated high-sensitive ATP bioluminometer with ultra-high sensitivity has been developed for detecting single bacteria.

Attomol-level ATP bioluminometer for detecting single bacterium

Luminescence, 2017, 32, 751-756
Masahiro Okanojo, Noe Miyashita, Aya Tazaki, Hiroko Tada, Fumiaki Hamazoto, Mitsuko Hisamatsu and Hideyuki Noda

Abstract: We have developed an automated high-sensitive ATP bioluminometer for detecting single bacterium. The apparatus consists of a tube rack for setting reagents and samples, two washing baths for preventing sample carry-over from dispenser nozzle, and x-, y-, z- actuators for moving the dispenser, and an high-sensitive optical system. The reaction tube was selected to reduce the background signal intensities for the ATP bioluminescence measurement. The background signal intensity of the reaction tube was 18 RLU, which is almost the same as the dark counts of the photomultiplier (16 RLU). The ATP calibration curve was linear from 0 to 5 amol (its slope = 22.4 RLU/amol and 3.3 SD of the blank sample signal = 17.9 RLU), and the detection limit of 0.8 amol was obtained. The relationship between intracellular ATP and CFU in Escherichia coli (ATCC25922) was kept linearity from 0 to 20 CFU, and the intracellular ATP (amol) per CFU was calculated to be 3.3 amol/CFU (R2 = 0.9713). Moreover, the relationship between intracellular ATP and CFU in Staphylococcus aureus (ATCC25923) was also kept linearity from 0 to 30 CFU, and the amol/CFU was calculated to be 1.6 amol/CFU (R2 = 0.9847). The automated ATP bioluminometer has ultra-high sensitivity and will be a powerful tool for measuring ATP luminescence derived from small number of bacteria.

  • This paper is free to view for all users registered on spectroscopyNOW.com until the end of October 2017.
    After this time, you can purchase it using Pay-Per-View on Wiley Online Library.

Follow us on Twitter!

Social Links

Share This Links

Bookmark and Share

Microsites

Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Copyright Information

Interested in separation science? Visit our sister site separationsNOW.com

Copyright © 2017 John Wiley & Sons, Inc. All Rights Reserved