Recent Developments in Analytical Science - Conclusion & References

Skip to Navigation

Education Article

  • Published: Jul 18, 2016
  • Channels: Gas Chromatography / Ion Chromatography / HPLC / Electrophoresis / Proteomics & Genomics / MRI Spectroscopy / Infrared Spectroscopy / Proteomics / NMR Knowledge Base / Raman / Base Peak / X-ray Spectrometry / Atomic


This brief the state-of-the-art review illustrates the continuing good health of the analytical science industry. The outlook remains encouraging as the growth of new developments and innovative techniques shows no signs of abating, driven by both the research sector and industry. It promises an exciting future for practitioners over the next 20-30 years.


1. T. Kockmann et al., Targeted proteomics coming of age – SRM, PRM and DIA performance evaluated from a core facility perspective. Proteomics in press, 2016.

2. Samuel Thomas et al., Biomarker discovery in mass spectrometry-based urinary proteomics. Proteomics - Clin. Appl., 10, 358-370, 2016.

3. National Biomarker Development Alliance fact sheet, available at

4. C.E, Parker and C.H. Borchers, Mass spectrometry based biomarker discovery, verification, and validation – Quality assurance and control of protein biomarker assays. Mol. Onco., 4, 840-858, 2014.

5. P.Q. Tranchida et al., Comprehensive two-dimensional gas chromatography-mass spectrometry: Recent evolution and current trends. Mass Spectrom. Rev., 35, 524-534, 2016.

6. M. Akbar et al., Chip-scale gas chromatography: From injection through detection. Microsystems & Nanoengineering 1, Article number: 15039, 2015.

7. K.Y. Chen and P.H. Chou, Detection of endocrine active substances in the aquatic environment in southern Taiwan using bioassays and LC-MS/MS. Chemosphere, 152, 214-220, 2016.

8. Z. Takats et al., Mass spectrometry sampling under ambient conditions with desorption electrospray ionization. Science, 306, 471-473, 2004.

9. R.B. Cody et al., Versatile new ion source for the analysis of materials in open air under ambient conditions. Anal. Chem., 77, 2297-2302, 2005.

10. A.M. Porcari et al., Food quality and authenticity screening via easy ambient sonic-spray ionization mass spectrometry. Analyst, 141, 1172-1184, 2016.

11. F.J. Andrade et al., Atmospheric pressure chemical ionization source. 1. Ionization of compounds in the gas phase. Anal. Chem., 80, 2646-2653, 2008.

12. N. Na et al., Development of a dielectric barrier discharge ion source for ambient mass spectrometry. J. Am. Soc. Mass Spectrom., 18, 1859-1862, 2007.

13. J. Shiea et al., Electrospray-assisted laser desorption/ionization mass spectrometry for direct ambient analysis of solids. Rapid Commun. Mass Spectrom., 19, 3701-3704, 2005.

14. J. Balog et al., Intraoperative tissue identification using rapid evaporative ionization mass spectrometry. Science Transl. Med., 194, 5, 194ra93, 2013.

15. R.D. Espy et al., Beyond the flask: Reactions on the fly in ambient mass spectrometry. TrAC Trends in Ana. Chem., 57, 135-146, 2014.

16. C. Cassagne et al., Performance of MALDI-TOF MS platforms for fungal identification. Mycoses 2016, in press.

17. MS Imaging Society, available at

18. B. Li et al., A point-of-care Raman spectroscopy-based device for the diagnosis of gout and pseudogout: Comparison with the clinical standard microscopy. Arthritis Rheumatol., 68, 1751-1757, 2016.

19. J. Raman Spectrosc., 45, 985-1346, 2014.

20. B. Sharma et al., SERS: Materials, applications, and the future. Materials Today, 15, 16-25, 2012.

21. A. Hakonen et al., Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale, 8, 1305-1308, 2016.

22. Z. Han et al., Portable kit for identification and detection of drugs in human urine using surface-enhanced Raman spectroscopy. Anal. Chem., 87, 9500-9506, 2015.

23. S. Farquharson et al., Rapid detection and identification of overdose drugs in saliva by surface-enhanced Raman scattering using fused gold colloids. Pharmaceutics 3, 425-439, 2011.

24. A.P. Craig et al., Surface-enhanced Raman spectroscopy applied to food safety. Annu. Rev. Food Sci. Technol., 4, 369-380, 2013.

25. L.E. Hennemann et al., Surface- and tip-enhanced Raman spectroscopy of DNA. J. Spectrosc., 24, 119-124, 2010.

26. C.-S. Liao et al., Spectrometer-free vibrational imaging by retrieving stimulated Raman signal from highly scattered photons. Sci. Adv., 1, e1500738. 2015.

27. A.T. Lewis et al., Detection of Lewis antigen structural change by FTIR spectroscopy. Carbohydr Polym. 92, 1294-1301, 2013.

28. A. Ghosh et al., Tidal surge in the M2 proton channel, sensed by 2D IR spectroscopy. PNAS 108, 6115-6120, 2010.

29. D.E. Rosenfeld et al., Structural dynamics of a catalytic monolayer probed by ultrafast 2D IR vibrational echoes. Science, 334, 634-639, 2011.

30. V. Bobroff et al., Quantitative IR microscopy and spectromics open the way to 3D digital pathology. J. Biophotonics 2016, in press

31. H.H. Chen et al., The future of Infrared spectroscopy in biosciences: In vitro, time-resolved, and 3D. Acta Phys. Polonica A, 129, 255-259, 2016..

32. T. Yamanoi et al., Complete NMR assignment of a bisecting hybrid-type oligosaccharide transferred by Mucor hiemalis endo-β-N-acetylglucosaminidase. Carbohydr Res. 427, 60-65, 2016.

33. J. Lopez et al., Studying intrinsically disordered proteins under true in vivo conditions by combined cross-polarization and carbonyl-detection NMR spectroscopy. Angew. Chem. 55, 7418-7422, 2016.

34. C.D. Ridge & E.P. Mazzola, Revisiting carbon-detected NMR experiments in light of technological advances in modern instrumentation. eMagRes, 4, 37-44, 2015.

35. H.L. Wheelet et al., Comprehensive multiphase NMR: a promising technology to study plants in their native state. Magn. Reson Chem., 53, 735-744, 2015.

36. A.H. Emwas, The strengths and weaknesses of NMR spectroscopy and mass spectrometry with particular focus on metabolomics research. Methods Mol Biol., 1277, 161-193, 2015.

37. J.-H. Ardenkjaer-Larsen et al., Facing and Overcoming Sensitivity Challenges in Biomolecular NMR Spectroscop. Angew. Chem., 54, 9162-9185, 2015.

38. K. Hashi et al., Achievement of 1020MHz NMR. J. Magn. Reson., 256, 30-33, 2015.

39. L.W. Sumner et al., Modern plant metabolomics: advanced natural product gene discoveries, improved technologies, and future prospects. Nat. Prod. Rep., 32, 212-229, 2015.

40. U. Bussy and M. Boujtita, Review of advances in coupling electrochemistry and liquid state NMR. Talanta, 136, 155-160.

41. M. Dell’Angela et al., Time resolved X-ray absorption spectroscopy in condensed matter: A road map to the future, J. Electron Spectrosc. Related Phenom. 200, 22-30, 2015.

42. C. Kulsing et al., Developments in gas chromatography using ionic liquid stationary phases. LCGC Europe, 28, 434-440, 2015.

43. M. Akbar et al., GC-on-chip: integrated column and photoionization detector. Lab Chip, 15, 1748-1758, 2015.

44. C. Cagliero et al., Conventional and enantioselective gas chromatography with microfabricated planar columns for analysis of real-world samples of plant volatile fraction. J. Chromatogr. A, 1429, 329-339.

45. D.S. Hage, Affinity Chromatography, in Encyclopedia of Analytical Chemistry, ISBN 9780470027318, Available at

46. K. Zhang et al., Analysis of pharmaceutical impurities using multi-heartcutting 2D LC coupled with UV-charged aerosol MS detection. J. Sep. Sci., 36, 2986-2992.

47. S. Magdeldin et al., Basics and recent advances of two dimensional- polyacrylamide gel electrophoresis. Clin. Proteomics, 11, 16, 2014.

48. K. Bengtsson et al., Conducting polymer electrodes for gel electrophoresis. PLoS One, 19, e8941.

49. W. Grochocki et al., Multidimensional capillary electrophoresis. Electrophoresis, 36, 135-143, 2015.

<<< Back to Contents

Social Links

Share This Links

Bookmark and Share


Suppliers Selection
Societies Selection

Banner Ad

Click here to see
all job opportunities

Most Viewed

Copyright Information

Interested in separation science? Visit our sister site

Copyright © 2019 John Wiley & Sons, Inc. All Rights Reserved